China manufacturer Pump Fan Compressor Single Joint Gas Turbines Key-Joint Double Elastic Disc Flexible Shaft Lock Disc Single Diaphragm Coupling for Truck


Product Description

Pump fan compressor single joint gas turbines Key-joint double elastic disc flexible shaft Lock disc single diaphragm coupling for truck

 

 

Metal flex couplings are disc type couplings in which several flexible metallic elements are alternately attached with bolts to opposite flanges. As polymeric elastomer is replaced by metal disc, Metal Flex coupling provides excellent temperature capability without sacrificing angular and axial misalignment. The coupling provides low axial and bending stiffness while possessing high torsional rigidity. The stretched shim pack design of CHINAMFG Metal Flex couplings provides zero backlash. CHINAMFG Metal Flex couplings are available up to 13367 Nm torque with single shim pack (UMK) and double shim pack (UMS) series.

FEATURES

1.Power to weight ratio high

2.Accommodates angular and axial misalignments

3.High temperature application

4.Visual inspection is possible without dismantling equipments

5.Low axial stiffness with high torsional rigidity

6.High-speed capacity

7.Range up to 12000 Nm

8.Added advantage of stretch fitted shim pack

Application:

1. Printing machinery / Packing machinery / Wood-working machinery etc large-scale mechanical equipment       

2. Repair replacement 

 

 

Company Information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

disc coupling

Comparison of Disc Couplings with Other Coupling Types

When comparing disc couplings with other coupling types like jaw couplings and elastomeric couplings, several factors come into play:

  • Flexibility: Disc couplings offer high flexibility and misalignment compensation, similar to elastomeric couplings, making them suitable for applications with angular, axial, and parallel misalignment.
  • Torsional Stiffness: Jaw couplings are known for their high torsional stiffness, which is suitable for precision applications. Disc couplings offer a balance between flexibility and stiffness.
  • Misalignment Compensation: Disc couplings excel in accommodating misalignment, whereas elastomeric couplings and jaw couplings are better suited for lower degrees of misalignment.
  • Vibration Damping: Elastomeric couplings provide excellent vibration damping due to their rubber elements. Disc couplings can also dampen vibrations to some extent.
  • Compactness: Jaw couplings and elastomeric couplings are relatively compact, making them suitable for space-constrained applications. Disc couplings are larger in size but offer higher torque capacity.
  • Torque Capacity: Disc couplings generally have higher torque capacity compared to elastomeric couplings and jaw couplings.
  • Installation and Maintenance: Disc couplings and elastomeric couplings are typically easier to install and require less maintenance compared to jaw couplings.
  • Material Options: All three coupling types are available in various materials, allowing for compatibility with different environments.

The choice between disc couplings, jaw couplings, and elastomeric couplings depends on the specific requirements of the application, including torque, misalignment, vibration, and stiffness considerations. Each coupling type has its strengths, and selecting the right one involves evaluating these factors to achieve optimal performance and reliability.

disc coupling

Maintaining and Extending the Lifespan of Disc Couplings

Proper maintenance is crucial to ensure the longevity and reliable performance of disc couplings. Here are the best practices:

  1. Regular Inspections: Conduct visual inspections to identify signs of wear, corrosion, or damage. Regular checks help detect issues early.
  2. Lubrication: Follow manufacturer recommendations for lubrication intervals and use the appropriate lubricants. Proper lubrication reduces friction and wear between disc elements.
  3. Alignment: Ensure proper alignment of the coupling and connected shafts. Misalignment can lead to premature wear and decreased coupling efficiency.
  4. Torque Monitoring: Monitor torque levels and load variations to identify abnormal fluctuations. Address sudden changes promptly to prevent further damage.
  5. Vibration Analysis: Use vibration analysis tools to detect and mitigate excessive vibration. Vibration can accelerate wear and affect machinery performance.
  6. Temperature Management: Monitor operating temperatures to avoid overheating. Excessive heat can lead to premature wear and material degradation.
  7. Load Consideration: Ensure the coupling is not subjected to loads beyond its capacity. Overloading can lead to accelerated wear and potential failure.
  8. Environmental Factors: Protect the coupling from contaminants, moisture, and corrosive substances that can accelerate deterioration.
  9. Timely Repairs: Address any identified issues promptly. Replace worn or damaged components to prevent further degradation.
  10. Professional Assistance: If you encounter complex issues, consider involving experienced technicians or engineers for diagnosis and repair.

Following these practices helps maintain optimal performance, extend the lifespan of disc couplings, and contribute to the overall efficiency and reliability of machinery systems.

disc coupling

Types of Disc Couplings for Specific Uses

Disc couplings come in various designs and configurations, each tailored to specific use cases and requirements. Here are some different types of disc couplings designed for specific applications:

  • Single Disc Couplings: These couplings consist of two hubs and a single flexible disc element. They are suitable for applications where angular misalignment compensation is the primary requirement.
  • Double Disc Couplings: These couplings include two flexible disc elements and three hubs. They provide higher torsional flexibility and axial movement absorption, making them suitable for more demanding applications.
  • Spacer Disc Couplings: Spacer disc couplings incorporate a spacer between the flexible disc elements. This design allows for greater axial movement and misalignment compensation.
  • Close-Coupled Disc Couplings: These couplings have a compact design with minimal spacing between the hubs and discs. They are commonly used in applications where space constraints are a concern.
  • Floating Shaft Disc Couplings: Floating shaft disc couplings are designed for applications where there is a need to connect shafts that are not in the same plane. They can accommodate both angular and axial misalignment.
  • High-Speed Disc Couplings: These couplings are specifically engineered to handle high rotational speeds while maintaining precise alignment and minimal vibration.
  • Heavy-Duty Disc Couplings: Heavy-duty disc couplings are built to transmit extremely high levels of torque and are often used in demanding industrial applications.
  • Customizable Disc Couplings: Some manufacturers offer customizable disc couplings that can be tailored to specific application requirements, such as material selection, size, and design parameters.

The choice of disc coupling type depends on factors such as the level of misalignment, torque transmission requirements, space constraints, and environmental conditions. Selecting the appropriate type ensures optimal performance and reliability in various machinery applications.

China manufacturer Pump Fan Compressor Single Joint Gas Turbines Key-Joint Double Elastic Disc Flexible Shaft Lock Disc Single Diaphragm Coupling for Truck  China manufacturer Pump Fan Compressor Single Joint Gas Turbines Key-Joint Double Elastic Disc Flexible Shaft Lock Disc Single Diaphragm Coupling for Truck
editor by CX 2024-05-13